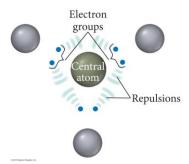
Chapter 10 Reading Guide	Name:	
AP Chemistry 2016-2017	Date:	Per:


This chapter goes into the structure of molecules and the reasons behind the geometries of the structures. These concepts are part of Big Idea 2 in the AP Chemistry curriculum. Bond orders are part of Big Idea 5. Concepts not in the curriculum include hybridizations with d orbitals and memorizing molecular orbital filling order.

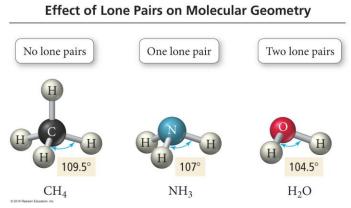
10.1 Artificial Sweeteners: Fooled by Molecular Shape

1. Explain what processes must occur for us to taste something sweet

10.2 VSPER Theory: The Five Basic Shapes

2. What does VSEPR stand for and what is this theory based on?

3. Using the figure above, explain what determines the geometry of a molecule.


4. Fill in the following table:

4. Fill III tile Iolic				
Number of	Example Molecule	Basic Name of the	Bond Angle(s)	Basic Drawing of
Electron Groups		Shape		the shape
on Central atom		_		
2				
3				
4				
4				
5				
6				

- 5. Explain why the bond angles in formaldehyde are not the predicted 120° for a trigonal planar structure.
- 6. Draw the Lewis structure for methane. Using methane as an example, explain why the Lewis structure gives and incomplete picture of the geometric structure of the molecule. Include a 3D diagram of methane, showing its geometrical shape, in your answer.

10.3 VSPER Theory: The Effects of Lone Pairs

Use the following diagram in answering questions 7-9

- 7. When lone electron pairs are presented on a central atom in a simple molecule, why are the electron geometries different from the molecular geometries.?
- 8. Explain why a tetrahedral electron geometry with one lone pair on the central atom does not show 109.5° angles. Use a 3D drawing in your answer.
- 9. Explain why a tetrahedral electron geometry with two lone pair on the central atom does not show 109.5° angles. Use a 3D drawing in your answer.
- 10. Explain how the electron geometries with five electron groups form molecular shapes with the following numbers of line pairs. Use diagrams in your answers.

1 lone pair:

2 lone pairs:

^										
3	-14	n	n	Δ	n	1	1	r	c	
J	1	v	и	C	$\mathbf{\nu}$	а	Ų.		3	•

11. Explain how the electron geometries with six electron groups form molecular shapes with the following numbers of line pairs. Use diagrams in your answers.

1 lone pair:

2 lone pairs:

12. Fill in the table below:

Number of Electron	Number of Lone Pairs on Central	Name of Electron	Name of Molecular	Example	Drawing
Groups	Atom	Geometry	Geometry		
4		•	•		
4					
5					
5					
5					
6					
6					

10.4 VSPER: Predicting Molecular Geometries (note that you will not be expected to draw in three dimensions on the AP exam, but you should still be familiar with these conventions)

13. In a three-dimensional (3-D) model how do you indicate (i) a bond in the plane of the paper, (ii) and bond going into the page, and (iii) a bond coming out of the page? Include a diagram in your answer.

14. Using a 3-D model, draw the basic model of each of the following: Trigonal Planar: Linear: Bent: Tetrahedral: Trigonal Trigonal Pyramidal: Bipyramidal: Seesaw: Octahedral: Square Planar: **10.5 Molecular Shape and Polarity** 15. Compare CCl₄ to CH₂Cl₂. Explain how to determine if a molecule is polar or not. 16. Why is it important to be able to determine the polarity of a molecule? What properties does it explain? 17. How can a molecule have polar bonds and be nonpolar? Provide an example. 18. Explain how phosphine, PH₃, can have nonpolar P-H bonds and be a polar molecule? 19. What are the unique properties of soap that allow it to clean off oil in a water environment?

CH₃(CH₂)₁₁OCH₂CH₂OH

20. On the following diagram indicate which end will dissolve in water and which end will dissolve in

fats and oils. Refer to page 442 for the coloring in this molecule.

10.6 Valence Bond Theory: Hybridization of Atomic Orbitals 21. What is a hybridized orbital?
22. In valence bond theory, what determines the shape of the molecule?
23. Explain how the Lewis model and the valence bond theory differ in their description of a chemical bond.
10.7 Valence Bond Theory: Hybridization of Atomic Orbitals 24. How do hybrid orbitals differ from atomic orbitals?
25. How is the number of hybrid orbitals determined?
26. Using a diagram, explain why a central atom such as carbon in CCl_4 is sp^3 hybridized and the molecule forms a tetrahedral shape.
27. Using a diagram, explain why a central atom with sp^2 hybridization forms a trigonal planar shape.
28. What types of orbitals and hybrid orbitals compose a double bond? A triple bond?
29. Draw the Lewis structure and the valence bond diagram for CO ² , showing the location of sigma bonds and pi bonds. Explain the difference between a sigma bond and a pi bond.
30. Using a diagram, explain why sp hybridization is linear in shape.
Self-Assessment Answers

elf-Assessment Answer. 1	s 4	7	10	13
2	5	8	11	14
3	6	9	12	15